Mission to hunt for alien life on Mars has landing site chosen by scientists



A robot on a mission to Mars to search for signs of alien life, has after years of discussion, has had its landing site selected more than four years of discussion.
Due to land in 2021, the ExoMars rover will drill into the surface of the red planet to search for evidence of ancient life buried underground.
The team behind the joint European-Russian project has selected a spot called Oxia Planum, which scientists think was the site of a large body of water billions of years ago.

Cold Super-Earth found orbiting closest single star to Sun



A planet has been detected orbiting Barnard's Star , a mere 6 light-years away. This breakthrough -- announced in a paper published today in the journal Nature -- is a result of the Red Dots and CARMENES projects, whose search for local rocky planets has already uncovered a new world orbiting our nearest neighbour, Proxima Centauri.
The planet, designated Barnard's Star b, now steps in as the second-closest known exoplanet to Earth [1]. The gathered data indicate that the planet could be a super-Earth, having a mass at least 3.2 times that of the Earth, which orbits its host star in roughly 233 days. Barnard's Star, the planet's host star, is a red dwarf, a cool, low-mass star, which only dimly illuminates this newly-discovered world. Light from Barnard's Star provides its planet with only 2% of the energy the Earth receives from the Sun.
Despite being relatively close to its parent star -- at a distance only 0.4 times that between Earth and the Sun -- the exoplanet lies close to the snow line, the region where volatile compounds such as water can condense into solid ice. This freezing, shadowy world could have a temperature of -170℃, making it inhospitable for life as we know it.
Named for astronomer E. E. Barnard, Barnard's Star is the closest single star to the Sun. While the star itself is ancient -- probably twice the age of our Sun -- and relatively inactive, it also has the fastest apparent motion of any star in the night sky [2]. Super-Earths are the most common type of planet to form around low-mass stars such as Barnard's Star, lending credibility to this newly discovered planetary candidate. Furthermore, current theories of planetary formation predict that the snow line is the ideal location for such planets to form.
Previous searches for a planet around Barnard's Star have had disappointing results -- this recent breakthrough was possible only by combining measurements from several high-precision instruments mounted on telescopes all over the world [3].
"After a very careful analysis, we are 99% confident that the planet is there," stated the team's lead scientist, Ignasi Ribas (Institute of Space Studies of Catalonia and the Institute of Space Sciences, CSIC in Spain). "However, we'll continue to observe this fast-moving star to exclude possible, but improbable, natural variations of the stellar brightness which could masquerade as a planet."
Among the instruments used were ESO's famous planet-hunting HARPS and UVES spectrographs. "HARPS played a vital part in this project. We combined archival data from other teams with new, overlapping, measurements of Barnard's star from different facilities," commented Guillem Anglada Escudé (Queen Mary University of London), co-lead scientist of the team behind this result. "The combination of instruments was key to allowing us to cross-check our result."
The astronomers used the Doppler effect to find the exoplanet candidate. While the planet orbits the star, its gravitational pull causes the star to wobble. When the star moves away from the Earth, its spectrum redshifts; that is, it moves towards longer wavelengths. Similarly, starlight is shifted towards shorter, bluer, wavelengths when the star moves towards Earth.
Astronomers take advantage of this effect to measure the changes in a star's velocity due to an orbiting exoplanet -- with astounding accuracy. HARPS can detect changes in the star's velocity as small as 3.5 km/h -- about walking pace. This approach to exoplanet hunting is known as the radial velocity method, and has never before been used to detect a similar super-Earth type exoplanet in such a large orbit around its star.
"We used observations from seven different instruments, spanning 20 years of measurements, making this one of the largest and most extensive datasets ever used for precise radial velocity studies." explained Ribas. "The combination of all data led to a total of 771 measurements -- a huge amount of information!"
"We have all worked very hard on this breakthrough," concluded Anglada-Escudé. "This discovery is the result of a large collaboration organised in the context of the Red Dots project, that included contributions from teams all over the world. Follow-up observations are already underway at different observatories worldwide."
Notes
[1] The only stars closer to the Sun make up the triple star system Alpha Centauri. In 2016, astronomers using ESO telescopes and other facilities found clear evidence of a planet orbiting the closest star to Earth in this system, Proxima Centauri. That planet lies just over 4 light-years from Earth, and was discovered by a team led by Guillem Anglada Escudé.
[2] The total velocity of Barnard's Star with respect to the Sun is about 500,000 km/h. Despite this blistering pace, it is not the fastest known star. What makes the star's motion noteworthy is how fast it appears to move across the night sky as seen from the Earth, known as its apparent motion. Barnard's Star travels a distance equivalent to the Moon's diameter across the sky every 180 years -- while this may not seem like much, it is by far the fastest apparent motion of any star.
[3] The facilities used in this research were: HARPS at the ESO 3.6-metre telescope; UVES at the ESO VLT; HARPS-N at the Telescopio Nazionale Galileo; HIRES at the Keck 10-metre telescope; PFS at the Carnegie's Magellan 6.5-m telescope; APF at the 2.4-m telescope at Lick Observatory; and CARMENES at the Calar Alto Observatory. Additionally, observations were made with the 90-cm telescope at the Sierra Nevada Observatory, the 40-cm robotic telescope at the SPACEOBS observatory, and the 80-cm Joan Oró Telescope of the Montsec Astronomical Observatory (OAdM)

Scientists unveil promising new HIV vaccine strategy



A new candidate HIV vaccine from Scripps Research surmounts technical hurdles that stymied previous vaccine efforts, and stimulates a powerful anti-HIV antibody response in animal tests.
The new vaccine strategy, described in a paper on November 23 in Science Advances, is based on the HIV envelope protein, Env. This complex, shape-shifting molecule has been notoriously difficult to produce in vaccines in a way that induces useful immunity to HIV.
However, the Scripps Research scientists found a simple, elegant method for stabilizing Env proteins in the desired shape even for diverse strains of HIV. Mounted on virus-like particles to mimic a whole virus, the stabilized Env proteins elicited robust anti-HIV antibody responses in mice and rabbits. Candidate vaccines based on this strategy are now being tested in monkeys.
"We see this new approach as a general solution to the long-standing problems of HIV vaccine design," says principal investigator Jiang Zhu, associate professor in the Department of Integrative Structural and Computation Biology at Scripps Research.
Copies of Env study the surface of HIV; their chief function is to grab hold of host cells and break into them to initiate infection. Since Env plays this crucial role in infection, and is the viral structure with the most exposure to the immune system of an infected host, it has been the main target of HIV vaccine efforts. The idea has been to inoculate people with the whole Env protein or subunits of it to stimulate the production of Env-binding antibodies, in the hope that these antibodies will prevent HIV from infecting host cells in future exposures to the virus.
So far, of course, no HIV vaccine has been effective in large-scale clinical trials. Many researchers believe that an HIV vaccine can work if it presents Env proteins to the immune system in a way that closely resembles the shape of Env on a real virus before it has infected a cell. But presenting Env correctly has been a huge challenge.
On an HIV virus, Env protrudes from the viral membrane in tight clusters of three, called trimers, and these complex structures adopt radically different shapes before and after infecting cells. HIV vaccine researchers, despite years and tens of millions of dollars of experimentation, have failed to find a broadly applicable method for stabilizing Env trimers in the desired, pre-infection shape.
"The trimer-stabilization solutions that have been reported so far have worked for a few HIV strains but have not been generalizable," Zhu says. "Env trimer 'metastability', as we call it, has really been a central problem for trimer-based HIV vaccine design."
Zhu, trained as a biophysicist, sought a more general solution to the Env stability problem, and in a paper in 2016 he and his Scripps Research colleagues reported that modifying a short, springy section of Env called HR1 might do the trick -- it allowed Env to stay in the pre-infection, "closed" shape.
In the new study he and his team showed that this strategy does indeed work for Env trimers from diverse HIV strains circulating in different parts of the world. This "uncleaved prefusion-optimized" (UFO) approach, as they call it, yields Env trimers that are stabilized in the closed shape and can be produced efficiently, with surprisingly little need for purification, in the types of cells normally used in biotech manufacturing.
"By now in my lab we've made this modification to Envs from 30 to 40 different HIV strains, and in most of the cases it has worked like a charm," Zhu says.
He and his colleagues further optimized their vaccine strategy by genetically linking their stabilized Env trimers, up to 60 at a time, to individual nanoparticles that mimic the globular shape of a whole virus. In this way the vaccine molecule, though artificial and lacking the genetic material for viral replication, seems to the immune system very much like a real invading virus and stimulates a stronger reaction.
In mice, Zhu and his team found, a sample Env-on-nanoparticles vaccine, within just eight weeks, elicited antibodies that in lab tests successfully neutralized a naturally circulating HIV strain -- of a type that prior candidate vaccines generally have failed against.
"This is the first time any candidate HIV vaccine has induced this desired type of antibody response in mice," Zhu says. Similarly unprecedented results were obtained in rabbits, demonstrating that the nanoparticle-based approach is clearly superior to the use of isolated Env proteins -- it elicits a significantly stronger response and does so much more quickly.
Further tests are now underway in 24 monkeys at the National Institutes of Health-sponsored Southwest National Primate Center in San Antonio, Texas.
Zhu and Scripps Research have licensed their HIV vaccine technology to a startup company, Ufovax LLC, which is sponsoring the ongoing tests. "We're now testing two candidate vaccines based on Env trimers from different HIV strains, plus a third candidate vaccine that is a cocktail of three Env-based vaccines," says Ji Li, Ufovax CEO. "We think this new approach represents a true breakthrough after 30 years of HIV vaccine research."

Solar panels for yeast cell biofactories



Genetically engineered microbes such as bacteria and yeasts have long been used as living factories to produce drugs and fine chemicals. More recently, researchers have started to combine bacteria with semiconductor technology that, similar to solar panels on the roof of a house, harvests energy from light and, when coupled to the microbes' surface, can boost their biosynthetic potential.
The first "biological-inorganic hybrid systems" (biohybrids) mostly focused on the fixation of atmospheric carbon dioxide and the production of alternative energies, and although promising, they also revealed key challenges. For example, semiconductors, which are made from toxic metals, thus far are assembled directly on bacterial cells and often harm them in the process. In addition, the initial focus on carbon-fixing microbes has limited the range of products to relatively simple molecules; if biohybrids could be created based on microorganisms equipped with more complex metabolisms, it would open new paths for the production of a much larger range of chemicals useful for many applications.
Now, in a study in Science, a multidisciplinary team led by Core Faculty member Neel Joshi and Postdoctoral Fellows Junling Guo and Miguel Suástegui at Harvard's Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences (SEAS) presents a highly adaptable solution to these challenges.
"While our strategy conceptually builds on earlier bacterial biohybrid systems that were engineered by our collaborator Daniel Nocera and others, we expanded the concept to yeast -- an organism that is already an industrial workhorse and is genetically easy to manipulate -- with a modular semiconductor component that provides biochemical energy to yeast's metabolic machinery without being toxic," said Joshi, Ph.D., who is a Core Faculty member at the Wyss Institute and Associate Professor at SEAS. Co-author Nocera is the Patterson Rockwood Professor of Energy at Harvard University. As a result of the combined manipulations, yeasts' ability to produce shikimic acid, an important precursor of the anti-viral drug Tamiflu, several other medicines, nutraceuticals, and fine chemicals, was significantly enhanced.
The baker's yeast Saccharomyces cerevisiae naturally produces shikimic acid to generate some of its building blocks for the synthesis of proteins and other biomolecules. However, by genetically modifying the yeast's central metabolism, the researchers enabled the cells to funnel more of the carbon atoms that their main nutrient source, the sugar glucose, contains into the pathway that produces shikimic acid and prevent the loss of carbon to alternative pathways by disrupting one of them.
"In principle, the increased 'carbon flux' towards shikimic acid should lead to higher product levels, but in normal yeast cells, the alternative pathway that we disrupted to increase yields, importantly, also provides the energy needed to fuel the final step of shikimic acid production," said co-first author Miguel Suástegui, Ph.D., a chemical engineer and former Postdoctoral Fellow in Joshi's team and now Scientist at Joyn Bio LLC. To boost the more carbon-effective but energy-depleted engineered shikimic acid pathway, "we hypothesized that we could generate the relevant energy-carrying molecule NADPH instead in a biohybrid approach with light-harvesting semiconductors."
Toward this goal, Suástegui collaborated with Junling Guo, Ph.D., the study's other co-corresponding and co-first author and presently a Postdoctoral Fellow with experience in chemistry and materials science in Joshi's lab. They designed a strategy that uses indium phosphide as a semiconductor material. "To make the semiconductor component truly modular and non-toxic, we coated indium phosphide nanoparticles with a natural polyphenol-based "glue," which allowed us to attach them to the surface of yeast cells while at the same time insulating the cells from the metal's toxicity," said Guo.
When tethered to the cell surface and illuminated, the semiconductor nanoparticles harvest electrons (energy) from light and hand them over to the yeast cells, which shuttle them across their cell walls into their cytoplasm. There the electrons elevate the levels of NADPH molecules, which now can fuel shikimic acid biosynthesis. "The yeast biohybrid cells, when kept in the dark, mostly produced simpler organic molecules such as glycerol and ethanol; but when exposed to light, they readily switched into shikimic acid production mode with an 11-fold increase in product levels, showing us that the energy transfer from light into the cell works very efficiently," said Joshi.
"This scalable approach creates an entirely new design space for future biohybrid technologies. In future efforts, the nature of semiconductors and the type of genetically engineered yeast cells can be varied in a plug-and-play fashion to expand the type of manufacturing processes and range of bioproducts," said Guo.
"The creation of light-harvesting, living cellular devices could fundamentally change the way we interact with our natural environment and allow us to be more creative and effective in the design and production of energy, medicines and chemical commodities," said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at HMS and the Vascular Biology Program at Boston Children's Hospital, as well as Professor of Bioengineering at SEAS.

Brain-computer interface advances improve prosthetics, therapies



Advances in connecting neural stimulation to physical control of the body are transforming the development of prosthetics and therapeutic training for people with disabilities, according to new research. The findings were presented at Neuroscience 2018.
As improved understanding of neural functions and interactions combines with technical advances, scientists are developing new and improved prosthetics and therapies aimed at improving quality of life for people with conditions such as paralysis, stroke, and blindness. Electrical signals that stimulate specific regions in the brain or body can bypass injuries in the spinal column or eyes and activate target regions, training the brain to process movement or vision in the most effective manner possible.
Today's new findings show that:
  • Advances in the precision and force of brain-controlled, computer-guided hand movements may enable people with quadriplegia and others suffering from hand paralysis to begin integrating electrical-stimulation-based prosthetics into their daily lives (Gaurav Sharma, abstract 271.01).
  • Using avatars to provide stroke patients with visual feedback in combination with real-time electronic feedback improved the use of motor function even years after a stroke (Christoph Guger, abstract 271.14).
  • A new prosthetic hand system is the first prosthesis designed for regular home use to restore task-related sensations to an amputee (Ranu Jung, abstract 404.10, see attached summary).
  • A new brain stimulation technique called "dynamic current steering" helps restore limited vision to blind people (Michael Beauchamp, abstract 226.09).
  • An assistive device that combines computer vision and sound cues can help blind people perform everyday tasks such as identifying and locating people and objects around them (Michael Paradiso, abstract 226.04).
"The advances presented today help expand what's possible with brain-machine interfaces," said press conference moderator Chethan Pandarinath, PhD, of Emory University, whose work interprets how the brain represents information and intention to build assistive devices for people with disabilities. "The neuroscience advances and range of techniques presented provide potential new assistive devices and treatment strategies for people with disabilities, and also open the door to a deeper understanding of how our brains translate intention into actions."

NASA Administrator to Announce New Moon to Mars Partnerships with US Companies

NASA invites media to its headquarters in Washington for the announcement of new Moon partnerships with American companies at 2 p.m. EST Thursday, Nov. 29. NASA Administrator Jim Bridenstine will make the announcement, which will air live on NASA Television and the agency's website.
Working with U.S. companies is the next step to achieving long-term scientific study and human exploration of the Moon and Mars
In addition to the administrator and future partners to be announced, participants in the event include:
  • Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate, Washington
  • Stan Love, NASA astronaut, NASA’s Johnson Space Center, Houston
  • Andrea Mosie, Apollo sample laboratory manager, Johnson
  • Barbara Cohen, associate project scientist for Lunar Reconnaissance Orbiter, NASA’s Goddard Space Flight Center, Greenbelt, Md.
  • FIRST Robotics students from the Washington area
To attend in person or receive dial-in information, media must send a request with their name, affiliation and phone number to JoAnna Wendel at joanna.r.wendel@nasa.gov no later than noon on Thursday.
The event also will be available through Facebook LiveTwitch TVYouTube, and Twitter/Periscope. The public may ask questions on Twitter by using the hashtag #askNASA or by leaving a comment on the livestream of the event on the NASA Facebook page.
Under Space Policy Directive-1, the agency will lead an innovative and sustainable exploration of the Moon together with commercial and international partners. 

NASA InSight Lander Arrives on Martian Surface to Learn What Lies Beneath




Mars has just received its newest robotic resident. NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander successfully touched down on the Red Planet after an almost seven-month, 300-million-mile (485-million-kilometer) journey from Earth. 
InSight’s two-year mission will be to study the deep interior of Mars to learn how all celestial bodies with rocky surfaces, including Earth and the Moon, formed
InSight launched from Vandenberg Air Force Base in California May 5. The lander touched down Monday, Nov. 26, near Mars' equator on the western side of a flat, smooth expanse of lava called Elysium Planitia, with a signal affirming a completed landing sequence at 11:52 a.m. PST (2:52 p.m. EST). 
"Today, we successfully landed on Mars for the eighth time in human history,” said NASA Administrator Jim Bridenstine. “InSight will study the interior of Mars, and will teach us valuable science as we prepare to send astronauts to the Moon and later to Mars. This accomplishment represents the ingenuity of America and our international partners and it serves as a testament to the dedication and perseverance of our team. The best of NASA is yet to come, and it is coming soon.”
The landing signal was relayed to NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, via NASA's two small experimental Mars Cube One (MarCO) CubeSats, which launched on the same rocket as InSight and followed the lander to Mars. They are the first CubeSats sent into deep space. After successfully carrying out a number of communications and in-flight navigation experiments, the twin MarCOs were set in position to receive transmissions during InSight's entry, descent and landing.

From Fast to Slow
"We hit the Martian atmosphere at 12,300 mph (19,800 kilometers per hour), and the whole sequence to touching down on the surface took only six-and-a-half minutes," said InSight project manager Tom Hoffman at JPL. "During that short span of time, InSight had to autonomously perform dozens of operations and do them flawlessly — and by all indications that is exactly what our spacecraft did."  
Confirmation of a successful touchdown is not the end of the challenges of landing on the Red Planet. InSight's surface-operations phase began a minute after touchdown. One of its first tasks is to deploy its two decagonal solar arrays, which will provide power. That process begins 16 minutes after landing and takes another 16 minutes to complete. 
The InSight team expects a confirmation later Monday that the spacecraft's solar panels successfully deployed. Verification will come from NASA's Odyssey spacecraft, currently orbiting Mars. That signal is expected to reach InSight's mission control at JPL about five-and-a-half hours after landing.
"We are solar powered, so getting the arrays out and operating is a big deal," said Hoffman. "With the arrays providing the energy we need to start the cool science operations, we are well on our way to thoroughly investigate what's inside of Mars for the very first time." 
InSight will begin to collect science data within the first week after landing, though the teams will focus mainly on preparing to set InSight's instruments on the Martian ground. At least two days after touchdown, the engineering team will begin to deploy InSight's 5.9-foot-long (1.8-meter-long) robotic arm so that it can take images of the landscape. 
"Landing was thrilling, but I'm looking forward to the drilling," said InSight principal investigator Bruce Banerdt of JPL. "When the first images come down, our engineering and science teams will hit the ground running, beginning to plan where to deploy our science instruments. Within two or three months, the arm will deploy the mission's main science instruments, the Seismic Experiment for Interior Structure (SEIS) and Heat Flow and Physical Properties Package (HP3) instruments."
InSight will operate on the surface for one Martian year, plus 40 Martian days, or sols, until Nov. 24, 2020. The mission objectives of the two small MarCOs which relayed InSight’s telemetry was completed after their Martian flyby.
"That's one giant leap for our intrepid, briefcase-sized robotic explorers," said Joel Krajewski, MarCOproject manager at JPL. "I think CubeSats have a big future beyond Earth's orbit, and the MarCO team is happy to trailblaze the way."
With InSight’s landing at Elysium Planitia, NASA has successfully soft-landed a vehicle on the Red Planet eight times. 
"Every Mars landing is daunting, but now with InSight safely on the surface we get to do a unique kind of science on Mars," said JPL director Michael Watkins. "The experimental MarCO CubeSats have also opened a new door to smaller planetary spacecraft. The success of these two unique missions is a tribute to the hundreds of talented engineers and scientists who put their genius and labor into making this a great day."
JPL manages InSight for NASA's Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by the agency's Marshall Space Flight Center in Huntsville, Alabama. The MarCO CubeSats were built and managed by JPL. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.
A number of European partners, including France's Centre National d'Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES, and the Institut de Physique du Globe de Paris (IPGP), provided the SEIS instrument, with significant contributions from the Max Planck Institute for Solar System Research (MPS) in Germany, the Swiss Institute of Technology (ETH) in Switzerland, Imperial College and Oxford University in the United Kingdom, and JPL. DLR provided the HP3 instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain's Centro de Astrobiología (CAB) supplied the wind sensors.